Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-\{[1-(2,4-Dichlorophenyl)-1,3-dioxolan-2-yl]-methyl\}-1H-1,2,4-triazole

Xue-Qun Xie, Chun-Long Yang,* Jin-Xiang Luo and Qian-Jin Li

College of Science, Nanjing Agricultural University, Nanjing 210095, People's Republic of China

Correspondence e-mail: Ilyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.057$
$w R$ factor $=0.102$
Data-to-parameter ratio $=14.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title compound, $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$, also referred to as azaconazole, the five-membered 1,3-dioxolane ring assumes an envelope conformation. In the crystal packing, the molecules are linked into an extended three-dimensional network by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

The title compound, (I), also referred to as azaconazole, is a well known agricultural fungicide and wood preservative (Van Gestel et al., 1980; Van Leemput, Swysen et al., 1987; Heeres, 1984). Compound (I) was also used as a technical aid in mushroom cultivation (Van Leemput, Demoen, et al., 1987). A search of the Cambridge Structural Database (CSD, Version 5.27; Allen, 2002) revealed that no crystallographic data are available for (I). Therefore, a single-crystal structural analysis of (I) was carried out in order to elucidate its structure and the results are reported here.

In the molecule of (I), bond distances and angles are within the expected ranges (Allen et al., 1987). The 1,3-dioxolane ring (O1/O2/C4-C6) adopts an envelope conformation, with puckering parameters $Q_{2}=0.281(2) \AA$ and $\varphi_{2}=34.8(6)^{\circ}$ (Cremer \& Pople, 1975). The triazole ring (N1-N3/C1/C2) is essentially planar [maximum displacement 0.054 (4) \AA for atom C1] and forms a dihedral angle of $20.32(9)^{\circ}$ with the benzene ring ($\mathrm{C} 7-\mathrm{C} 12$).

The crystal packing of (I) is stabilized by weak intra- and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions (Table 1, Fig. 2).

Experimental

The title compound was synthesized according to the literature method of Yang et al. (2001). Colourless single crystals of (I) were obtained by slow evaporation of an ethanol solution at 298 K . Elemental analysis, calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$: C 48.02, H 3.66, N 14.01\%; found: C 47.95, H 3.66, N 13.98\%.

Received 8 May 2006
Accepted 6 June 2006

Figure 1
The structure of (I), with 30% probability displacement ellipsoids.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=300.14$
Orthorhombic, Pbca
$a=11.121(2) \AA \AA^{\circ}$
$b=7.2420(14) \AA$
$c=32.691(7) \AA$
$V=2632.9(9) \AA^{3}$
$Z=8$
$M=300.14$
Orthorhombic, $P b c a$
$D_{x}=1.514 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.49 \mathrm{~mm}^{-1}$
$b=7.2420(14) \AA$
$T=298$ (2) K
$V=2632.9(9) \AA^{3}$
Block, colourless
$0.40 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.827, T_{\text {max }}=0.952$
5108 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.102$
$S=1.03$
2584 reflections
173 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.03 P)^{2}\right. \\
& +0.55 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e} \AA_{\circ}^{-3} \\
& \Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0032 \text { (4) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 2$	0.93	2.31	$2.689(3)$	104
$\mathrm{C} 3-\mathrm{H} 3 A \cdots 2^{\mathrm{i}}$	0.97	2.35	$3.306(4)$	168

Symmetry code: (i) $-x+\frac{1}{2}, y+\frac{1}{2}, z$.
All H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93-$ $0.97 \AA$, and were refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 2
A partial packing diagram for the title compound, showing the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions (dashed lines).

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXL97.

This project was supported by the Jiangsu Province Natural Science Foundation of China (grant No. BK2005094).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Heeres, J. (1984). Pestic. Sci. 15, 268-279.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Sheldrick, G. M. (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Van Gestel, J., Heeres, J., Janssen, M. \& Van Reet, G. (1980). Pestic. Sci. 11, 9599.

Van Leemput, L., Demoen, E., Woestenborghs, R., Valcke, A., Meuldermans, W., Van Gestel, J. \& Heykants, J. (1987). Meded. Fac. Landbouwwet. Rijksuniv. Gent, 52, 703-711.
Van Leemput, L., Swysen, V., Meuldermans, W. \& Heykants, J. (1987). Chemosphere, 16, 1281-1288.
Yang, C.-L., Jiang, M.-G. \& XU, H. (2001). Agrochemicals, 40, 9-10. (In Chinese.)

[^0]: (C) 2006 International Union of Crystallography All rights reserved

